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Diffusion Models and SDEs
Lecture 1:

A very fast paced introduction to the foundations / notation.



Probability Space

• Sample Space

(Ω,Σ,P)
• Event  Space e.g 

• Probability Measure

2
{0,1}

/ Sigma Algebra: is a algebra/system of sets 
that are “closed” under countable # of 
operations                     and ∪,∩, \Ω

Ω = {0, 1} Ω = Re.g                               or

P(∪i∈IAi) =
∑

i∈I

P(Ai)

Ai ∩Aj = ∅, i ̸= j , ∃f : I ←→ N

Ω, ∅ ∈ Σ ⊆ 2
Ω

P(Ω) = 1, P (A) ≥ 0
Quick Probability Recap



Probability Space

• Sample Space

(Ω,B(Ω),P)
• Event  Space e.g 

• Probability Measure

2
{0,1}

The Borel-sigma algebra is the smallest 
sigma algebra containing the event space 
(i.e. intersect all possible sigma algebra 
containing Omega).

Ω = {0, 1} Ω = Re.g                              or

P(∪i∈IAi) =
∑

i∈I

P(Ai)

Ai ∩Aj = ∅, i ̸= j , ∃f : I ←→ N

P(Ω) = 1, P (A) ≥ 0
Quick Probability Recap



Filtered Probability Space

• Think of a filtration  as the sample space of a time series, that is 
a series of sample spaces:

(Ω,B(Ω),F ,P)

F = {Ft}t∈[0,T ]

s ≤ t =⇒ Fs ⊆ Ft

Quick Probability Recap



Stochastic Process

• Collection of Random Variables  (Measurable Maps) !

(

C([0, T ];Rd),B
(

C([0, T ];Rd)
)

,F ,P
)

{Xt}t∈[0,T ]

A ∈ Fs =⇒ X
−1(A) ∈ B(Rd)

Xt(ω) : [0, T ]× Ω → R
d

Quick Probability Recap



Quick Probability Recap
Brownian Motion

• Brownian motion is a Gaussian Process, and one of the simplest Stochastic 
Processes:
• Pinned Origin: 
• Independent increments
•
• is continuous in    (almost surely)

W0 = 0
s, t > 0, Wt+s −Wt ⊥⊥ Wt

Wt+s −Wt ∼ N (0, s)
Wt t

W ∼ GP(0,min(s, t))



Quick Probability Recap
Lebesgue Integral ∫

A

dλ = λ(A)
∫
Ω

IA(x)dλ = λ(A)

∫
Ω

n∑
i=1

aiIAi
(x)dλ =

n∑
i=1

aiλ(Ai)

∫

A

fdλ = sup

{

∫

sdλ : 0 ≤ s ≤ f, s =
n
∑

i=1

αiIAi
(x)

}



Quick Probability Recap
Lebesgue Measure

λ([a, b]) = |a− b|

λ (∪i∈I [ai, bi]) =
∑

i∈I

λ ([ai, bi])

λ(A) = inf {λ(I) : A ⊆ I, I = ∪i∈I [ai, bi]}

• Caratheodory Extension Theorem and Criterion 
assert uniqueness/existence of the space (R,B(R),λ)

Volume/Size



Quick Probability Recap
Lebesgue Integral

∫
A

dλ = λ(A)
∫
Ω

IA(x)dλ = λ(A)

∫
Ω

n∑
i=1

aiIAi
(x)dλ =

n∑
i=1

aiλ(Ai)

∫

A

fdλ = sup

{

∫

sdλ : 0 ≤ s ≤ f, s =
n
∑

i=1

αiIAi
(x)

}



We can replace lambda with a probability distribution/measure yielding the familiar 
expectation:

Lebesgue-Stjelties Integral

∫
A

f(x)dλ(x) =

∫
A

f(x)dx =

∫
A

f(x)λ(dx)

∫

A

fdλ = sup

{

∫

sdλ : 0 ≤ s ≤ f, s =
n
∑

i=1

αiIAi
(x)

}

∫
A

f(x)dP (x) = EP [f(X)]

Quick Probability Recap



Quick Probability Recap
Lebesgue Integral Matches Traditional Riemann Integral

fn
pointwise

→ f and |fn| ≤ g(x)

Why bother with this integral formalism, isn’t Reimann enough ? Many useful theorems come for free, 
in particular Dominated Convergence (for integrable g): 

lim
n→∞

EP [fn(X)] = EP [f(X)]
=
⇒



Quick Probability Recap
Lebesgue Integral – Exercise (Uniform Distribution)

P ([a, b]) = |a− b|

P (Ω) = P ([0, 1]) = 1∫
[1/4,1/2]

dP =?

∫
[0,1]

I[1/e,1/(e+1)](x)dP =?

∫
Ω
xdP =?



Quick Probability Recap
Lebesgue Integral – Exercise (Uniform Distribution)

P ([a, b]) = |a− b|

P (Ω) = P ([0, 1]) = 1∫
[1/4,1/2]

dP = 1/2

∫
[0,1]

I[1/e,1/(e+1)](x)dP = 1/(e(e+ 1))

∫
Ω
xdP = 1/2



Radon Nikodym Theorem – Change of Measure

µ(A) =

∫
A

dµ

dλ
(x)dλ(x)

µ << λ := λ(A) = 0 =⇒ µ(A) = 0

∫
A

f(x)dµ(x) =

∫
A

f(x)
dµ

dλ
(x)dλ(x)

Quick Probability Recap



P(A) =

∫
A

dP

dλ
(x)dλ(x)P << λ

P(A) =

∫
A

dP

dλ
(x)dλ(x) =

∫
A

dP

dλ
(x)dx

Now For sake of simplicity assume Reimann Integrability

dP

dλ
(x) =??

Radon Nikodym Theorem – Probaility Density Function
Quick Probability Recap



P(A) =

∫
A

dP

dλ
(x)dλ(x)P << λ

P(A) =

∫
A

dP

dλ
(x)dλ(x) =

∫
A

dP

dλ
(x)dx

Now For sake of simplicity assume Reimann Integrability

dP

dλ
(x) = Probability Density Function !

Radon Nikodym Theorem – Probaility Density Function
Quick Probability Recap



P << Q

∫
Ω

f(x)dP(x) =

∫
Ω

f(x)
dP

dQ
(x)dQ(x)

EP[f(X)] = EQ

[

f(X)
dP

dQ
(X)

]

EP[f(X)] = EQ

[

f(X)
p(X)

q(X)

]

Radon Nikodym Theorem – Importance Sampling
Quick Probability Recap



Quick Probability Recap
Modes of Convergence - Exercise

• What does It mean for two random variables to be equal ? Is it as 
simple as saying they have the same distribution ?



Quick Probability Recap
Modes of Convergence

• What does It mean for two random variables to be equal ? Is it as 
simple as saying they have the same distribution ? (Law X = 
Distribution of X)

P (|X − Y | > ϵ) = 0

P (|X − Y | = 0) = 1

E [|X − Y |p] = 0

LawX = LawY



Quick Probability Recap
Modes of Convergence

• In particular we speak about modes of convergence when we 
consider limits

lim
n→∞

P (|X −Xn| > ϵ) = 0

lim
n→∞

P (|X −Xn| = 0) = 1

lim
n→∞

E [|X −Xn|
p] = 0

LawX = lim
n→∞

LawXn



lim
n→∞

P (|X −Xn| > ϵ) = 0 P

(

lim
n→∞

Xn = X

)

= 1

lim
n→∞

E [|X −Xn|
p] = 0 LawX = lim

n→∞

LawXn

=
⇒

=⇒

=

⇒

=⇒

=
⇒

Modes of equality/convergence of r.v.s.
Quick Probability Recap



X0 ∼ π,

ϵn ∼ N (0, γI)

Xn+1 = Xn + f(Xn, n)δt+
√
δtϵn,

SDEs
Heuristic 1 – Discrete Time Markov Chain (Euler Maruyama Discretisation)



• Consider the ODE + Noise

X0 ∼ π,

dXt

dt
= f(Xt, t) + γw(t),

w(·) ∼ GP(0, Is=t)

SDEs
Heuristic 2 – Langevin Dynamics and White Noise



• Can think of this as a Reimann 
integral with convergence 
asserted in the              senseYt =

∫
t

0

Xsds
L

p(P)

Zt =

∫
t

0

YsdXs

• Now integrating against/wrt to 
random variable. Not so simple to 
define. Reimann conditions fail

SDEs
Stochastic Integrals - Types



E

[

n
∑

k=1

Wtk(Wtk+1
−Wtk)

]

= 0

E

[

n
∑

k=1

Wtk+1
(Wtk+1

−Wtk)

]

= t

• Where you evaluate the integrand (within the grid) changes the result, thus 
violating the conditions required to be Reimann integrable (remember upper 
and lower Darboux sums must much)

SDEs
Stochastic Integrals – Counter Example



• First partition the grid [0,t] 

• Now we make the following assumption

• Then the Ito Integral is defined as:

SDEs
Stochastic Integrals - Definition

lim
n→∞

E

[
∫

t

0
|Yt − Y

(n)
t

|2ds

]

= 0 s.t.

tk+1 − tk =

t

N

∫ t

0
YsdWs

L
2(P)
= lim

n→∞

n∑
k=1

Ytk(Wtk+1
−Wtk)

Y
(n)(t) =

n∑

k=1

YtkIt∈[tk,tk+1)(t)

≈
N
(0,

ds
)



Conditional Expectation - Martingale

E [Xt|Fs] = Xs

=
⇒

E [Xt|Xs] = E [Xt|σ(Xs)] = Xs

Martingales



The optimal predictor of X as a function of Y (Hilbert projection)

Is given by the conditional expectation:

Conditional Expectation, MSE
Quick Aside (Useful Later)

∪,∩, \Ω

argmin
f−is measurable

E (X − f(Y ))2

f∗(Y ) = E[X|Y ]



The optimal predictor of the future as a function of the past in a 
martingale:

Is given by past itself:

Martingales
Martingales – Intuitive Intro

∪,∩, \Ω

argmin
f−is measurable

E (Xt+δ − f(Xt))
2

f∗(Xt) = E[Xt+δ|Xt] = Xt



SDEs
Stochastic Integrals - Martingales

E

[

∫

t

0

XτdWτ

∣

∣

∣

∣

∣

Fs

]

=

∫

s

0

XτdWτ



E

[
∫

t

0

XτdWτ

]

= E

[

E

[

∫

t

0

XτdWτ

∣

∣

∣

∣

∣

F0

]]

= E

[
∫ 0

0

XτdWτ

]

= 0

Martingales
Stochastic Integrals - Martingales



• Assumptions (Lipchitz + Linear Growth):

• Then we have existence and uniqueness of (in            ):

|µ(x, t)− µ(y, s)|+ |σ(x, t)− σ(y, s)| ≤ L(|x− y|+ |t− s|)

|µ(x, t)|+ |σ(x, t)| ≤ C(1 + |x|)

X0 ∼ π

Xt = X0 +

∫
t

0

µ(Xs, s)ds+

∫
t

0

σ(Xs, s)dWs

L
p(P)

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt

SDEs
Formal Definition - Stochastic Piccard Lindeloff Theorem



Solving SDEs



Brownian Motion

∪,∩, \Ω



SDE Properties
Quadratic Variation of Brownian Motion

∪,∩, \Ω

lim
n→∞

E

(

t−

n
∑

i=1

(Wti+1
−Wti)

2

)2

= 0



SDE Properties
Quadratic Variation of Brownian Motion

∪,∩, \Ω

dWt

dWt dt

dt

dt

0 0

0

lim
n→∞

E

(

t−

n
∑

i=1

(Wti+1
−Wti)

2

)2

= 0









• Consider the ODE + Noise

X0 ∼ π,

dXt

dt
= f(Xt, t) + γw(t),

w(·) ∼ GP(0, Is=t)

SDEs
Heuristic 2 – Langevin Dynamics and White Noise



Solve SDEs just like ODEs?
Heuristic Treatment only takes you so far



Some parts of ordinary calculus stop working!
The Chain rule bites us



Ito’s Lemma



Ito’s Lemma



SDE Properties

∪,∩, \Ω

Given the SDE:

Consider a function             doubly differentiable in space and admitting 
single derivatives in time. Then the process                          satisfies: 

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt

f(t, x)
Yt = f(t,Xt)

dYt =

(

∂tf +∇f⊤µ(Xt, t) +
1

2
tr(σ(Xt, t)

⊤
∇∇fσ(Xt, t))

)

dt+∇f⊤σ(Xt, t)dWt



SDE Properties
Ito’s Lemma - Exercise : Geometric Brownian Motion

∪,∩, \Ω

Let us solve the SDE:

now consider the transformation                      what are ?Yt = lnXt

∂tf =??, ∂xf =?? ∂2

x
f =??

dXt = µXtdt+ σXtdWt



SDE Properties
Ito’s Lemma - Exercise : Geometric Brownian Motion

∪,∩, \Ω

Let us solve the SDE:

now consider the transformation                      what are ?

dXt = µXtdt+ σXtdWt

Yt = lnXt

∂tf = 0, ∂xf = 1/x ∂2

x
f = −1/x2

dYt =

(

µ

Xt

·Xt −

σ2

2X2
t

·X2

t

)

dt−
σ

Xt

·XtdWt



SDE Properties
Ito’s Lemma - Exercise : Geometric Brownian Motion

∪,∩, \Ω

Let us solve the SDE:

now consider the transformation                      what are ?Yt = lnXt

∂tf = 0, ∂xf = 1/x ∂2

x
f = −1/x2

dXt = µXtdt+ σXtdWt

dYt =

(

µ−

σ2

2

)

dt− σdWt



SDE Properties
Ito’s Lemma - Exercise : Geometric Brownian Motion

∪,∩, \Ω

Now let us solve the SDE:

Remember                      thus: 

dYt =

(

µ−

σ2

2

)

dt− σdWt

Yt = Y0 +

(

µ−

σ2

2

)
∫

t

0

ds− σ

∫

t

0

dWs = Y0 +

(

µ−

σ2

2

)

t+ σWt

Yt = lnXt

Xt = e
Yt

= X0e

(

µ−σ
2

2

)

t+σWt



Geometric Brownian Motion - Simulation

Xt = e
Yt

= X0e

(

µ−σ
2

2

)

t+σWt



Linear SDEs
OU - Process

∪,∩, \Ω

Mean reverting process. Reverts you back to mu.

X0 ∼ π

dXt = α(µ−Xt)dt+
√

2αdWt



Linear SDEs
OU - Process

∪,∩, \Ω

For simplicity focus on the 0-mean case.

X0 ∼ π

dXt = −αXtdt+
√

2αdWt



Linear SDEs
OU - Process

∪,∩, \Ω

Can be solved analytically via Integrating factor + Ito’s Lemma (notice 
how X_t looks like the DDPM kernel):

Xt = X0e
−αt + (1− e

−2αt)1/2W1

Xt = X0e
−αt +W1−e−2αt



Linear SDEs
OU - Process

∪,∩, \Ω

Can be solved analytically via Integrating factor + Ito’s Lemma (notice 
how X_t looks like the DDPM kernel):

Xt = X0e
−αt + (1− e

−2αt)1/2W1

Xt = X0e
−αt +W1−e−2αt



OU Process - Simulation



OU Process - Simulation



Linear SDEs
OU - Process

∪,∩, \Ω

Intuitively you can see how the limit behaves:

This is a completely informal/heuristic treatment. Calling it a heuristic is 
kind, but you can see where it is going.

lim
t→∞

Xt

??
= W1 ∼ N (0, I)



Linear SDEs
OU - Process

∪,∩, \Ω

More formal arguments can be made:

Can be a bit tricky to show from scratch, typically involves working with the 
Fokker Plank Equation + Using an Eigen decomposition of its semi group. 
Alternatively, Martingale methods have also been used. 

Convergence in KL, W_p can also be attained see Bakry, Gentil, Ledoux 
Analysis and Geometry of Markov Diffusion Operators.

||LawXt −N (0, I)||TV ≤ Ce−α
1/2

t



Non Linear SDEs  - Simply Discretise
Euler Maruyama (EM) Discretisation

∪,∩, \Ω

To solve SDEs of the form

We simply discretize them via EM

Can prove convergence in          .  Can we design better integrators ? 

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt

X0 ∼ π,

ϵtk ∼ N (0, γI)

Xtk+1
= Xtk + µ(Xtk , tk)δt+

√
δtσ(Xtk , tk)ϵtk ,

L
p(P)



Fokker Planck Equation



Fokker Plank Equation
How does the marginal density evolve (SDEs ó Parabolic PDEs)

∪,∩, \Ω

What is the probability density of the SDE solution at a given time ?

There's a special PDE (think heat equation) whose solution yield the 
marginal density:

LawXt = pt(x) =???

∂tpt(x) = −

d∑

i=1

∂xi
[µi(t, xi)pt(x)] +

d∑

i,j=1

∂xi,xj
[σσ⊤

ij(t, x)pt(x)]



Fokker Plank Equation
How does the marginal density evolve (SDEs ó Parabolic PDEs)

∪,∩, \Ω

What is the probability density of the SDE solution at a given time ?

There's a special PDE (think heat equation) whose solution yield the 
marginal density:

LawXt = pt(x) =???

∂tpt(x) = P(pt)



FPE for Brownian Motion



Infinitesimal Generator
Uniquely Characterises PDE and Adjoint to FPK Operator

∪,∩, \Ω

Consider the following operator for a given SDE

Can be shown to reduce to:

At[f(x)] = lim
t→0

E[f(Xt)]− x

t

At[f ] = ∂tf + µ ·∇f +
1

2

∑

ij

[σσ⊤]ij(x, t)∂xi,xj
f

= ∂tf + P†(f)


