
Diffusion Models and SDEs
Lecture 3:

Schrodinger Bridges, IPF/Sinkhorn, Entropic Optimal Transport



In 1931/32, Erwin Schrodinger proposed the following 
Gedankenexperiment [52, 53]: 

Consider the evolution of a cloud of N independent Brownian particles 
in R^3 . This cloud of particles has been observed having at the initial 
time t = 0 an empirical distribution equal to      . 

Schrodinger 1931/32

Schrodinger Bridges – Intuition

π0



At time t = T, an empirical distribution       is observed which 
considerably differs from what it should be according to the law of 
large numbers (N is large, typically of the order of Avogadro’s number), 
namely

It seems that the particles have been transported in an unlikely way. 
But of the many unlikely ways in which this could have happened, 
which one is the most likely?

Schrodinger 1931/32

Schrodinger Bridges – Intuition

π1(y) !=

∫
R3

N (y;x, T )π0(x)dx

π1



Schrodinger 1931/32

Schrodinger Bridges – Motivation



Much  harder problem than half bridges. Does not admit such a simple 
unconstrained formulation.  Lets disintegrate:

Constrained Optimisation

P
∗ = argmin

P : s.t. P0=π0,PT=π1

DKL(P||P
ρ)

Schrodinger Bridges – Constrained KL minimisation

argmin
P : s.t. P0=π0,PT=π1

DKL(P0,T ||P
ρ
0,T ) + EP0,T

DKL(P|0,T ||P
ρ
|0,T )



Already looking like Entropic OT simply let p(x|y) = exp(-c(x,y)/sigma^2) 
and we arrive at your usual entropic OT objective. 

From Dynamic SBP to Static Entropic OT

Schrodinger Bridges – Entropic Optimal Transport

argmin
P : s.t. P0=π0,PT=π1

DKL(P0,T ||P
ρ
0,T )

argmin
p(x,y): s.t.p(x)=π0,p(y)=π1

E[σ2 ln pρ
T |0(y|x)] + σ2H(p)

argmin
P : s.t. P0=π0,PT=π1

DKL(P0,T ||P
ρ
0,T ) + EP0,T

!
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!
!
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DKL(P|0,T ||P
ρ
|0,T )



Let \rho=0 then we have :

Aka the entropy regularized Wasserstein distance between the 
boundary distributions.

From Dynamic SBP to Static Entropic OT

Schrodinger Bridges – Entropic Optimal Transport

min
p(x,y): s.t.p(x)=π0,p(y)=π1

E[σ2 ln pρ
T |0(y|x)] + σ2H(p)

min
p(x,y): s.t.p(x)=π0,p(y)=π1

E[||y − x||2] + σ2H(p) = W2
2,σ2(π0,π1)



The above IPF (Iterative Proportional Fitting) iterates also known as
sinkhorn have been proved to converge to the Schrodinger bridge 
solution. This approach dates back to Kullback.

Solution - Alternating Subproblems (Coordinate Ascent  - Sinkhorn Algorithm)

Q∗

i = argmin
Q : s.t. QT=π1

DKL(Q||P∗

i )

Schrodinger Bridges – IPF/Sinkhorn Algorithm

P∗

i+1 = argmin
P : s.t. P0=π0

DKL(P||Q
∗

i )

P
∗

0 = P
ρ



These should look familiar

They are half bridges, and we know how to solve via score matching or 
stochastic control (i.e., via minimizing forward or reverse KL iteratively 
more later in the paper presentations). 

Solution - Alternating Subproblems (Coordinate Ascent  - Sinkhorn Algorithm)

Q∗

i = argmin
Q : s.t. QT=π1

DKL(Q||P∗

i )

Schrodinger Bridges – IPF/Sinkhorn Algorithm

P∗

i+1 = argmin
P : s.t. P0=π0

DKL(P||Q
∗

i )



Another way to formulate the solution (and construct iterations) is 
based on the Schrodinger system:

Result can be arrived at via Disintegration Theorem ->  Lagrange 
Multipliers -> Calc of Variations. (The potentials are the Lagrange 
multipliers).

Solution – Functional System of Potentials

Schrodinger Bridges – Schrodinger System

φ̂0(x)φ0(x) = π0(x), φ̂1(y)φ1(y) = π1(y)

φ0(x) =

∫
pT |0(x|y)φ1(y)dy, φ̂1(y) =

∫
pT |0(y|x)φ̂0(x)dx



Then given the potentials we have that

Solve The Schrodinger Bridge when the path measures represent SDE 
solutions.

Solution – Functional System of Potentials

Schrodinger Bridges – Schrodinger System

dXt =

(

ρ+ σ2

(

∇Xt
ln

∫

φ1(z)p
ρ
T |t(z|Xt)dx

))

dt+ σdWt

dYt =

(

ρ− σ2

(

∇Yt
ln

∫

φ̂0(z)p
ρ
t|0(Yt|z)dz

))

dt+ σdW−
t

X0 ∼ π0

Y0 ∼ π1



Furthermore, the potentials 

Solve the Following PDEs (remember space-time regularity from Doobs
transform):

These are just the FPK and the backward Kolmogorov equations. With funky 
boundary conditions.

Solution – PDE Formulation

Schrodinger Bridges – Schrodinger System

φt(x) =

∫
φ1(z)p

ρ
T |t(z|x)dx φ̂t(y) =

∫
φ̂0(z)p

ρ

t|0(y|z)dz

−∂tφt = ∇φt · ρ+ σ2∆φt,

∂tφ̂t = −∇ · (φ̂tρ) + σ2∆φ̂t,

φ̂0(x)φ0(x) = π0(x)

φ̂1(y)φ1(y) = π1(y)



Via reversing Flemings/Hopf-Cole transform that is:

Then through some standard calculus we arrive at the following HJB-PDEs:

And thus, connecting to stochastic control / verification results etc.

Solution – PDE Formulation

Schrodinger Bridges – HJB/Hopf-Cole/Flemming

ψt(x) = exp(φt(x)), ψ̂t(y) = exp(φ̂t(y))

−∂tψt = ||σ∇ψt||
2 +∇ψt · ρ+ σ2∆ψt, ψ̂0(x) + ψ0(x) = lnπ0(x)

ψ̂1(y) + ψ1(y) = lnπ1(y)∂tψ̂t = ||σ∇ψ̂t||
2 −∇ψ̂t · (ρ− ln pt) + σ2∆ψ̂t,



We studied two SDEs which transform complex distributions into simple 
distributions:

The OU process which rapidly mixes into a Gaussian, and the Pinned 
Brownian motion which instantaneously maps any distribution into a point 
mass.

Their respective time reversals provide us with tractable generative models!

OU and Pinned Brownian Motion

Recap and Take Aways

X0 ∼ π

dXt = α(µ−Xt)dt+
√

2αdWt

X0 ∼ π

dXt =
µ−Xt

T − t
dt+

√
σdWt

Z0 ∼ lawXT ≈ N (µ, 1)

dZt = (α(Zt − µ) + 2α∇ ln pT−t(Zt))dt+
√
2αdBt

Z0 = µ

dZt =
(Zt − µ

t
+ σ2

∇ ln pT−t(Zt)
)

dt+ σdBt



In both settings we can learn the score and thus the time reversal via solving 
simple MSE/Regression objectives where we sample from the original noising 
processes to generate the “data” for the objectives.

In both cases learning the score / time reversal has an equivalent variational 
formulation in terms of half/full bridges:

Which can be applied to gen modelling, sampling, path simulation, etc.

OU and Pinned Brownian Motion

Recap and Take Aways

Z0 ∼ lawXT ≈ N (µ, 1)

dZt = (α(Zt − µ) + 2α∇ ln pT−t(Zt))dt+
√
2αdBt

Z0 = µ

dZt =
(Zt − µ

t
+ σ2

∇ ln pT−t(Zt)
)

dt+ σdBt

argmin
P : s.t. PT=π

DKL(P||P
α(µ−x)) argmin

P : s.t. P0=δ0,PT=π
DKL(P||P

0)



Imagine I have access to a probability density function of the form

Where U(x) is a “regular” function that can  be computed pointwise however 
the denominator (partition function) we do not have access to. We would 
like to be able to sample random variables such that

The Sampling Problem

Sampling – Quick Change of Gears !

p(x) =
e−U(x)

∫
e−U(x)dx

X ∼ p(x)



Consider a posterior we wish to draw samples from (in order to predict via 
the posterior predictive):

Here 

And P(X) is typically intractable.

The Sampling Problem – Motivation Bayesian Inference

Sampling – Quick Change of Gears !

p(θ|X) =
eln p(X|θ)p(θ)

p(X)

U(x) = − ln p(X|θ)p(θ)



The following SDE  (looks a bit like OU ?)

Has the property:

However, unlike OU it mixes slowly (sqrt convergence).

Could we use half bridges to learn a sampler ? Yes ! More Later. 

The Sampling Problem – SDEs to the rescue (Unadapted Langevin Algorithm – ULA)

Sampling – Quick Change of Gears !

lim
t→∞

lawXt =
e−U(x)

∫
e−U(x)dx

dXt = −α∇U(Xt)dt+
√
2αdWt



Consider the posterior example:

Then:

Could we use half bridges to learn a sampler ? Yes ! More Later. 

The Sampling Problem – Bayesian Inference with ULA – Test of time award ICML 2021

Sampling – Quick Change of Gears !

lim
t→∞

lawΘt = p(θ|X)

dΘt = α∇ ln p(X|Θt)p(Θt)dt+
√
2αdWt


